Παρασκευή, 7 Οκτωβρίου 2011

Απλά λόγια για τα νετρίνα


Αυτός ο κόσμος ο μικρός, 

ο μέγας...

«Το άξιον εστί», Οδυσσέας Ελύτης

Λίγα λόγια για το νετρίνο.


Γράφει ο Γιάννης Αλεξάκης

-ο φίλος μας που ακούραστα(!) με την πολύτιμη βοήθεια του μας συνοδεύει στο ταξίδι της επιστήμης, της Γνώσης, της έρευνας-.

Σχετικά με τα νετρίνα και την πρόσφατη πειραματική διαπίστωση ότι μπορούν να αναπτύξουν ταχύτητες μεγαλύτερες από την ταχύτητα του φωτός.

Αυτό που θα μας απασχολήσει εδώ είναι δυο πειραματικές, παρατηρησιακές διαπιστώσεις για τα νετρίνα:
1.     Ότι έχουν μάζα.
2.     Ότι μπορούν να αναπτύξουν ταχύτητες μεγαλύτερες από την ταχύτητα του φωτός.

Η 1η παρατήρηση έχει επιβεβαιωθεί από πολλά εργαστήρια και αποτελεί πια κοινά αποδεκτή διαπίστωση.
Η 2η έχει διαπιστωθεί πρόσφατα από τους επιστήμονες που συμμετέχουν στο πείραμα OPERA.
Αν γίνουν και άλλες εργαστηριακές επιβεβαιώσεις της 2ης παρατήρησης τότε θα ανατραπούν πολλά στο θεωρητικό οικοδόμημα της σύγχρονης Φυσικής.
Πρώτα από όλα θα θιγεί η ίδια η Ειδική Θεωρία της Σχετικότητας. Η θεωρία δηλαδή που σαν ακρογωνιαίο λίθο της έχει την αρχή ότι δεν μπορούν να υπάρξουν στην φύση (το σύμπαν) ταχύτητες μεγαλύτερες από την ταχύτητα του Φωτός.


Γενικά για τα σωματίδια που έχουν μάζα ισχύει ότι:

mr = m0 γ= m0 γ(υ)                                                                   (1)

Με :                                                                                                     
  γ(υ)=1/sqrt (1 - v2/c2)=1/τετραγωνική ρίζα(1 - v2/c2)      

Όπου:
mr είναι η λεγόμενη σχετικιστική μάζα του σωματιδίου
m0 είναι η μάζα ακινησίας ή αμετάβλητη μάζα του σωματιδίου
γ(υ) είναι ο παράγοντας Lorentz
υ είναι η ταχύτητα του σωματιδίου
c είναι η ταχύτητα του φωτός στο κενό
Όπως ηδη αναφέραμε η ταχύτητα υ του σωματιδίου δεν μπορεί κατά την Ειδική Θεωρία της Σχετικότητας να γίνει ποτέ ίση με την ταχύτητα του φωτός c επειδή:
Αν η ταχύτητα του σωματιδίου υ τείνει να γίνει ίση με την ταχύτητα του φωτός c τότε ο παράγοντας Lorentz που εξαρτάται από την ταχύτητα του σωματιδίου  υ και  είναι μια συνάρτηση του υ, τείνει να ξεπεράσει κάθε όριο και να γίνει άπειρος, επειδή η ποσότητα μέσα στο ριζικό στον παρονομαστή τείνει να γίνει μηδέν, αφού η v2/c2 τείνει να γίνει c2/c2 που είναι ίσο με 1.
Αν μάλιστα η ταχύτητα του σωματιδίου υ ξεπεράσει την  ταχύτητα του φωτός c και γίνει  υc τότε η ποσότητα μέσα στο ριζικό γίνεται αρνητική αφού υ²/ c² θα γίνει μεγαλύτερο από το 1 και κατά συνέπεια ο παράγοντας Lorentz θα γίνει φανταστικός.
Κατά συνέπεια η σχετικιστική μάζα mr του σωματιδίου από την εξίσωση   
mr = γ(υ)m0 αφού πρώτα γίνει άπειρη μετά θα εμφανιστεί σαν φανταστική.
Με άλλα λόγια η Ειδική Θεωρία της Σχετικότητας δεν επιτρέπει σε κανένα σωματίδιο με μάζα να αποκτήσει ταχύτητα ίση ή μεγαλύτερη της ταχύτητας του φωτός.  
Σε σύγκρουση με αυτά έρχονται λοιπόν οι νέες πειραματικές μετρήσεις ταχυτήτων των νετρίνων μεγαλυτέρων από την ταχύτητα του φωτός που αν δεν είναι λανθασμένες τότε θα πρέπει να ανατραπεί ή έστω να διασκευαστεί η Ειδική Θεωρία της Σχετικότητας.

(1) Πολλές φόρες αν δεν έχουμε κειμενογράφο με δυνατότητες γραφής μαθηματικών τύπων γράφουμε sqrt (square root) αντί για το σύμβολο της τετραγωνικής ρίζας που σημαίνει  τετραγωνική ρίζα και η εξίσωση (1) γράφεται:
mr = m0 γ(υ) =  m0 /sqrt (1 - v2/c2) = m0 /τετραγωνική ρίζα(1 - v2/c2),
Επίσης γράφουμε γ(υ)  αντί  γ  για να δείξουμε την εξάρτηση του παράγοντα Lorentz από την ταχύτητα υ του σωματιδίου.
Παρατήρηση:
Τα τελευταία χρόνια οι φυσικοί αποφεύγουν να χρησιμοποιούν την σχετικιστική μάζα, αν και είναι σωστή ως έννοια της φυσικής, και προτιμούν την χρήση των ισοδυνάμων εννοιών  της ενέργειας E και της ορμής p.
Επειδή η μάζα συνδέεται με αυτά τα φυσικά μεγέθη με τις σχέσεις:
    mr = E/c2
    m0 = sqrt(E2/c4 - p2/c2)
Τα μεγέθη αυτά (η ενεργεία δηλαδή και η ορμή του σωματιδίου) τείνουν επίσης να ξεπεράσουν κάθε όριο (να γίνουν άπειρα) όταν η ταχύτητα του σωματιδίου τείνει να γίνει ίση με την ταχύτητα του φωτός. Όπως και να το δούμε, αυτό που περιγράφεται με όλους τους παραπάνω τύπους είναι η απαγόρευση για τα υλικά σωματίδια να κινηθουν με ταχύτητες ίσες ή μεγαλύτερες από την ταχύτητα του φωτός.
Οι μαθηματικοί τύποι που παρουσιάσαμε, όπως όλοι οι τύποι που εφαρμόζουμε στην φυσική, είναι ανθρώπινα δημιουργήματα με τα οποία προσπαθούμε να περιγράψουμε την φύση ή ακριβέστερα την αντίληψη που έχουμε για την φύση, αν το επίπεδο γνώσης μας βελτιωθεί και η αντίληψη μας καλυτερεύσει, μπορούμε να τα απορρίψουμε ακριβώς όπως τα αποδεχθήκαμε. Αυτό κάνει την διαφορά ανάμεσα στην επιστημονική γνώση και τα δόγματα πίστεως: Η επιστημονική γνώση δεν περιμένει απλά αλλά επιδιώκει την αλλαγή της ενώ το δόγμα παραμένει άκαμπτα αναλλοίωτο.  
Βιβλιογραφία:
1.     Rindler W., SPECIAL RELATIVITY, Oliver and Boyd (1960), σελίδα 79 κ.ε.
2.     Perkins D., INTRODUCTION TO HIGH ENERGY PHYSICS, (1972) Addison-Wesley, σελίδα 161
3.     Shu F. ΑΣΤΡΟΦΥΣΙΚΉ – Δομή και εξέλιξη του Σύμπαντος, (1991) Παν. Εκδόσεις Κρήτης, τόμος 1, σελίδες 116,118
Γιάννης Αλεξάκης
ΥΓ:
1.     Στην μικρή αυτήν παρουσίαση ασχοληθήκαμε μόνο με δυο ιδιότητες των νετρίνων την μάζα τους και την ταχύτητα που θα μπορούσαν να αναπτύξουν, και αυτό το κάναμε πολύ απλουστευτικά.
2.     Δες και το κείμενο που ακολουθεί.

Does mass change with velocity?

There is sometimes confusion surrounding the subject of mass in relativity. This is because there are two separate uses of the term. Sometimes people say "mass" when they mean "relativistic mass", mr but at other times they say "mass" when they mean "invariant mass", m0. These two meanings are not the same. The invariant mass of a particle is independent of its velocity v, whereas relativistic mass increases with velocity and tends to infinity as the velocity approaches the speed of light c. They can be defined as follows,

    mr = E/c2
    m0 = sqrt(E2/c4 - p2/c2)
Where E is energy, p is momentum and c is the speed of light in vacuum. The velocity dependent relation between the two is,

   mr = m0 /sqrt(1 - v2/c2)
Of the two, the definition of invariant mass is much preferred over the definition of relativistic mass. These days when physicists talk about mass in their research they always mean invariant mass. The symbol m for invariant mass is used without the suffix 0. Although relativistic mass is not wrong it often leads to confusion and is less useful in advanced applications such as quantum field theory and general relativity. Using the word "mass" unqualified to mean relativistic mass is wrong because the word on its own will usually be taken to mean invariant mass. For example, when physicists quote a value for "the mass of the electron" they mean invariant mass.
At zero velocity the relativistic mass is equal to the invariant mass. The invariant mass is therefore often called the "rest mass". This latter terminology reflects the fact that historically it was relativistic mass which was often regarded as the correct concept of mass in the early years of relativity. In 1905 Einstein wrote a paper entitled "Does the inertia of a body depend upon its energy content?", to which his answer was "yes". The first record of the relationship of mass and energy explicitly in the form E = mc2 was written by Einstein in a review of relativity in 1907. If this formula is taken to include kinetic energy then it is only valid for relativistic mass, but it can also be taken as valid in the rest frame for invariant mass. Einstein's conventions and interpretations were sometimes ambivalent and varied a little over the years, however examination of Einstein's papers and books on relativity show that he almost never used relativistic mass himself. Whenever the symbol m for mass appears in his equations it is always invariant mass. He did not introduce the notion that the mass of a body increases with velocity just that it increases with energy content. The equation E = mc2 was only meant to be applied in the rest frame of the particle. Perhaps Einstein's only definite reference to mass increasing with kinetic energy is in his "autobiographical notes".
To find the real origin of the concept of relativistic mass you have to look back to the earlier papers of Lorentz. In 1904 Lorentz wrote a paper "Electromagnetic Phenomena in a System Moving With Any Velocity Less Than That of Light." There he introduced the "'longitudinal' and 'transverse' electromagnetic masses of the electron." With these he could write the equations of motion for an electron in an electromagnetic field in the Newtonian form F = ma where m increases with mass. Between 1905 and 1909 Planck, Lewis and Tolman developed the relativistic theory of force, momentum and energy. A single mass dependence could be used for any acceleration if F = d/dt(mv) is used instead of F = ma. This introduced the concept of relativistic mass which can be used in the equation E = mc2 even for moving objects. It seems to have been Lewis who introduced the appropriate velocity dependence of mass in 1908 but the term "relativistic mass" appeared later. [Gilbert Lewis was a chemist whose other claims to fame in physics was naming the photon in 1926.]
Relativistic mass became common usage in the relativity text books of the early 1920's written by Pauli, Eddington and Born. As particle physics became more important to physicists in the 1950's the invariant mass of particles became more significant and inevitably people started to use the term "mass" to mean invariant mass. Gradually this took over as the normal convention and the concept of relativistic mass increasing with velocity was played down.
The case of photons and other particles which move at the speed of light is special. From the formula relating relativistic mass to invariant mass, it follows that the invariant mass of a photon must be zero but the relativistic mass need not be. The phrase "The rest mass of a photon is zero" sounds nonsensical because the photon can never be at rest but this is just a misfortunate accident of terminology. In modern physics texts the term mass when unqualified means invariant mass and photons are said to be "massless" (see Physics FAQ. What is the mass of the photon?). Teaching experience shows that this avoids most sources of confusion.
Despite the general usage of an invariant mass in the scientific literature, the use of the word mass to mean relativistic mass is still found in many popular science books. For example, Stephen Hawking in "A Brief History of Time" writes "Because of the equivalence of energy and mass, the energy which an object has due to its motion will add to its mass." and Richard Feynman in "The Character of Physical Law" wrote "the energy associated with motion appears as an extra mass, so things get heavier when they move." Evidently, Hawking and Feynman and many others use this terminology because it is intuitive and is useful when you want to explain things without using too much mathematics. The standard convention followed by some physicists seems to be: use invariant mass when doing research and writing papers for other physicists but use relativistic mass when writing for non-physicists. It is a curious dichotomy of terminology which inevitably leads to confusion. A common example is the mistaken belief that a fast moving particle must form a black hole because of its increase in mass (see relativity FAQ article if you go too fast do you become a black hole? )
Looking more deeply into what is going on we find that there are two equivalent ways of formulating special relativity. Einstein's original mechanical formalism is described in terms of inertial reference frames, velocities, forces, length contraction and time dilation. Relativistic mass fits naturally into this mechanical framework but it is not essential. If relativistic mass is used it is easier to form a correspondence with Newtonian mechanics since some Newtonian equations remain valid,

           F = dp/dt
           p = mrv
Also, in this picture mass is conserved along with energy.
The second formulation is the more mathematical one introduced a year later by Minkowski. It is described in terms of space-time, energy-momentum four vectors, world lines, light cones, proper time and invariant mass. This version is harder to relate to ordinary intuition because force and velocity are less useful in their 4-vector forms. On the other hand, it is much easier to generalise this formalism to the curved space-time of general relativity where global inertial frames do not usually exist.
It may seem that Einstein's original mechanical formalism should be easier to learn because it retains many equations from the familiar Newtonian mechanics. In Minkowski's geometric formalism simple concepts such as velocity and force are replaced with worldlines and four-vectors. Yet the mechanical formalism often proves harder to swallow and is at the root of many peoples failure to get over the paradoxes which are so often discussed. Once students have been taught about Minkowski space they invariably see things more clearly. The paradoxes are revealed for what they are and calculations also become simpler. It is debatable whether or not the relativistic mechanical formalism should be avoided altogether. It can still provide the correspondence between the new physics and the old which is important to grasp at the early stages. Then the step from the mechanical formalism to the geometric can be easier. The alternative modern teaching method, is to translate Newtonian mechanics into a geometric formalism using Galilean relativity in 4 dimensional space-time and then modify the geometric picture to Minkowski space.
The preference for invariant mass is stressed and justified in the classic relativity textbook "Space-time Physics" by Taylor and Wheeler who write,
"Ouch! The concept of 'relativistic mass' is subject to misunderstanding. That's why we don't use it. First, it applies the name mass - belonging to the magnitude of a 4-vector - to a very different concept, the time component of a 4-vector. Second, it makes increase of energy of an object with velocity or momentum to appear connected with some change in internal structure of the object. In reality, the increase of energy with velocity originates not in the object but in the geometric properties of space-time itself.";
In the final analysis the issue is a debate over whether or not relativistic mass should be used is a matter of semantics and teaching methods. The concept of relativistic mass is not wrong. It could have its uses in special relativity at an elementary level. This debate surfaced in "Physics Today" in 1989 when Lev Okun wrote an article urging that relativistic mass should no longer be taught (42, #6 June, 1989 p. 31). Wolfgang Rindler responded with a letter to the editors to defend its continued use. (43, #5 May, 1990 p.13).
The experience of answering confused questions on Usenet suggests that its use in popular books and elementary texts is not helpful. The fact that relativistic mass is virtually never used in contemporary scientific research literature is a strong argument against teaching it to students who will go on to more advanced levels. Invariant mass proves to be more fundamental in Minkowski's geometric approach to special relativity and relativistic mass is of no use at all in general relativity. It is possible to avoid relativistic mass from the outset by talking of energy instead. Judging by usage in modern text books the consensus is that relativistic mass is an outdated concept which is best avoided. There are people who still want to use relativistic mass and it is not easy to settle an argument over semantic issues because there is no absolute right or wrong, just conventions of terminology. It is hard to impose conventions on Usenet and there will always be people who post questions using terms in which mass increases with velocity. It is unhelpful to just tell them that what they read or heard on cable TV is wrong but it will reduce confusion for them in the longer term if people can be persuaded to think in terms of invariant mass instead of relativistic mass.
In a 1948 letter to Lincoln Barnett Einstein wrote
"It is not good to introduce the concept of the mass M = m/(1-v2/c2)1/2 of a body for which no clear definition can be given. It is better to introduce no other mass than 'the rest mass' m. Instead of introducing M, it is better to mention the expression for the momentum and energy of a body in motion."
The viewpoint above, emphasising the distinction between mass, momentum, and energy, is certainly the "modern" view. Fifty years later, can relativistic mass be laid to rest?
references:
Arguments against the term "relativistic mass" are given in the classic relativity text book "Space-Time Physics" by Taylor and Wheeler, 2nd edition, Freeman Press (1992).
The article "Does mass really depend on velocity, dad?" by Carl E Adler, American Journal of Physics 55, 739 (1987) also discusses this subject and includes the above quote from Einstein against the use of relativistic mass
Einstein's original papers can be found in English translation in "The Principle of Relativity" by Einstein and others, Dover Press
Some other historical details can be found in "Concepts of mass" by Max jammer
and "Einstein's Revolution" by Elie Zahar.

Δεν υπάρχουν σχόλια: